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Linearized equations are set up to describe the effect o f  a circularly 

polarized electromagnetic wave on a plasma composed of thermal electrons and protons 

and also containing an anisotropic relativistic proton component. The unperturbed 

composite plasma is  taken to be embedded in a homogeneous, uniform magnetic field 

and the wave is  taken to propagate along the unperturbed magnetic field. 

For wave frequencies very much less than the electron cyclotron frequency 

it i s  shown that the relativistic proton plasma wi l l  be unstable provided only that 

{\ E where [ and denote the relativistic plasma pressures parallel 

and perpendicular to the ambient magnetic field respectively. 

The minimum e-folding time i s  estimated and upon inserting numerical 

parameters appropriate to the cosmic ray gas in the galactic disc i t  i s  shown that 

parallel anisotropy ([, 7 p ~ )  w i l l  be destroyed in a t ime short compared to the 

mean lifetime of cosmic rays i n  the disc(-bx 10 years). 
5 



I .  Introduction 

I t  i s  well known that the observed cosmic rays are isotropic to better 

than 1% (Greisen, 1956). It is  also well known that the average cosmic ray lifetime 

in the galactic disc i s  about 6 x 10 years (Parker, 1965). It i s  therefore of some 

importance to find mechanisms which w i l l  reduce arbitrary degrees of anisotropy to 

less than the 1% level in a time short compared to the cosmic ray lifetime. (This 

is  based on the assumption that cosmic rays are produced anisotropically throughout 

the galactic disc by supernovae, etc.) 

5 

It has been conjectured that irregularities in the mean galactic 

magnetic field are capable of reducing anisotropy through re-distribution of pitch 

angles. However not much is  known about the scale size of  such irregularities. Con- 

sequently it i s  of interest to examine other possible processes which w i l l  reduce 

anisotropy. In several recent papers (Lerche, 1966a and earlier references therein) 

we examined the possibility that cyclotron and space charge waves were plausible 

mechanisms for producing a reduction in  anisotropy of the cosmic ray gas. It was 

found that these waves were indeed capable of producing such a reduction in  a 

reasonable time provided only that 

Since i t  i s  not known whether the 1% anisotropy refers to perpendicular 

) anisotropy it i s  of some considerable 

b e  interest to see i f  any waves exist which w i l l  yield an unstable situation for 

It can be shown (Lerche, 1966b) that a relativistic plasma wi l l  be 

unstable for e, > provided also that 

A 
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where No 
difficult condition to meet for the cosmic ray gas in the galactic disc. w i t h  PVCW b t de 

We wi l l  demonstrate in this paper that for wave frequencies very 

i s  the magnitude of  the ambient magnetic field. This i s  an extremely 

Y pa YQ )n ezrs 

b 

much less than the electron 

ray plasma unstable against 

2. The Dispersion Relation 

cyclotron frequency it is  possible to make the cosmic 

CbP, the magneto-acoustic mode provided only that 

We choose a Cartesian co-ordinate system 50 that the galactic magnetic 

field, which we take to be homogeneous, uniform and of strength 

in the Z-direction. Thus 

HQ , points 

We take each component of the embedded plasma to be collisionless when i t  follows 

, for protons (+) or electrons (-) satisfies F that the distribution function, 

Here (> 0) i s  the charge on a proton, r/4 denotes the rest mass of 

a proton (+) or electron (-) respectively, and the normalized momentum 

defined in terms of the real momentum , $ , through % = $1 , 

The speed of light in vacuo i s  denoted by 

.e is 

C 

We now choose to perturb the plasma by a right handed circularly 

polarized electromagnetic wave whose vector potential, f l  , i s  given by 
& 
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Setting 

where subscript '0' 

equation for f,- can be written 

denotes equilibrium values, we see that the linearized 

t 

Setting 

we satisfies the equation 
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I t  can easily be seen from (3) that the equilibrium distribution 

function, , satisfies 

provided that H0 has no spatial gradients and that there i s  no ambient electric 

field. 

In order to solve (7) for $:(&) it i s  convenient to transform 

to cylindrical coordinates in momentum space defined by 

Upon making use of (8) in the form 

i t  i s  a simple matter to show that the solution to (7) i s  given by 
1 

where 
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In order to obtain a self-consistent field we must also satisfy 

n 

Maxwe I I 's equation 

Upon substitution for #;cmJ r r t  6) in (1 1) we see that we must demand 

(1 3) 

denotes the fact that we must sum the terms for t, - Here the sum over 

protons (+) and electrons (-) respectively. 

3. The Thermal Ecpilibrium Distributions 

Before further progress can be made with (13) we require some knowledge 

of the equilibrium distribution functions. Let us bear in mind that we are looking for 

Y instability of the cosmic ray proton plasma. In order to exhibit the basic instabilit 

(if any) of this component of the plasma, we treat the thermal background of electrons 

and protons as being completely cold, Thus for the thermal plasma we can write 

Here & are the number densities of the cold protons (+) and electrons (-) 
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respective I y. A I s 0  L(3) i s  the usual Dirac -function. We further 

assume that the cosmic ray number density i s  very much smaller than either & or 

N- . Thus we can set N+= = N , say, to a very good approxi- 

mation. Also since the cosmic ray plasma i s  tenuous we assume that i t provides a 

negligible contribution to the real part of the dispersion relation (13). Under this 

assumption it can easily be shown that (13) becomes 

w he re 

Here Q i s  the number density of cosmic my protons and we have written 

for the cosmic ray equilibrium distribution function. FW) F) 
It should be pointed out that F i s  normalized so that 
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4. Stability Considerations 

I '  

I '  

In order to decide whether the system, whose dispersion relation i s  

given by (15), i s  unstable or not i t  can be shown (Penrose, 1960) that it i s  both 

necessary and sufficient to define k real and positive and to define G 

to l ie ini t ial ly in the upper half complex plane. In general (15) can be cast in 

the form 

where and are real functions of the complex variable G) 0 

and 

Since I? i s  meromorphic in 0 i t  follows that 

Thus 
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I '  

Hence it i s  clear that an unstable situation will develop provided 

For real G) we see that 

v > O  . 

 or IQ-1 it is a simple matter to show that (23) becomes 

and in this reaime 

Thus under the approximation a&<< 1Q-I 
wil l  develop for this mode provided only that 

an unstable situation 
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t 

In order to find the imaginary part of the double integral in (27) 

real i t  i s  convenient to transform to new variables of integration to for 

avoid the branch cut which appears in the integrand. To this end we let 

when i t  follows that 

It i s  then a simple matter to show that (27) becomes 
m -a . 

0 (29) 

For R real and positive we see that as &(a) + 0 from above 

we must understand 

where 
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. Here Kx‘) 3 and we are regarding & as a function of 

denotes the principal value of  )(-’ . 
We see that such an understanding leads to a non-zero value for 

K(% 0 )  provided that 

which condition, for a wave travelling in the positive 

( i.e. %>o ), demands that 

3. -direction 

3 

where 

Here @ i s  the phase refractive index of the wave. It i s  a simple matter to 

show that 4 >L provided n * l  ’ 

Thus 

It can be seen by inspection that if F i s  a monotonically 

decreasing function of E only,then )oo for a l l  *> and 
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. 

, 

the system i s  stable since the requirement for instability is that K < 0 

* '  for some range of 

Before further progress can be made with (33) we need to know the 

cosmic ray equilibrium distribution function. It is  well known (Parker, 1965) that 

In order to demonstrate instability for a particular cosmic ray 

distribution function we choose 

This particular distribution function has the advantage that i t  enables the integral 

in  (33) to be performed exactly. Also i t  behaves in a similar manner to the observed 

cosmic ray spectrum at  high values. At  the same time i t  gives an idea of 

the response due to the inclusion of  a fixed amount of anisotropy through the 

pa rame te r o( 

ray spectrum but rather that i t  possesses the essential 

spectrum. 

. We do not maintain that (34) represents the observed cosmic 

features of  the observed 
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Y 

. Here are the cosmic ray gas pressure components parallel and 

t 

perpendicular to the ambient magnetic field respectively. 

In some respects (34) i s  a rather particular distribution function 

since it possesses only two independent parameters, namely ’s and o( . 
Thus once the normalization condition and the energy density of cosmic rays are 

specified the pressure components follow automatically. However this i s  not a serious 

failing. The point i s  that (37) w i l l  demonstrate the existence, or otherwise, of a 

basically unstable situation without involving an extreme amount o f  non-essential 

mat hemat ics. 

Upon making use of (34) in (33) we see that 

l”kl<c Ia-I N o w  under the approximation 
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for which K <O i s  extremely difficult wR so that to find the range of 

in general. 

We wi l l  see later that in the case of the galactic medium h\> I  

provided a,] . Under this approximation there are two limiting 

cases in which (37) becomes tractable. 

In this case Ea and (37) becomes 

(39) 2 

mvided O C ~  O(nq). Q 
I t  i s  clear that this situation yields an unstable situation 

provided only that o() 0 . Now from (36) i t  can be shown that 

Thus an unstable situation develops provided 02-i1y that 

In this case the e-folding t ime i s  given by 
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I t  would appear from (42) that the minimum e-folding time occurs as 

%-, 0 . However we are restricted to values of &JB such that 

. We therefore turn our  attention to the 
6 

. 

. 

other extreme situation. 

In this case Eez & and (37) becomes 

e 
provided 

In this case we see that an unstable situation wi l l  develop provided 

The e-folding time in this case i s  given by 

This e-folding time increases without l im i t  as 

ande(45) we see that 

-3 0 . Thus from (42) 

possesses a minimum value when 

J 
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Wlt and a t  this value of 

This result i s  derived under the approximations 

I AO\ 
\ - r l  I 

We w i l l  see later that these conditions are easily realized in the case of the galactic 

plasma. 

The wavelength of this most unstable wave i s  given by 

6 

5. Numerical Estimates 

, 

In order to decide whether the instabiIitJ proceeds at a significant 

rate for the galactic plasma we need to know E l ,  ’ v l q  and 

R- E 
It i s  known from observations that H, 3 bx /o D6 (Davies,1965). 

The number density of cosmic ray protons has been estirm ted (Parker, 1965) to be 

about 10 cm . For @( sufficiently small compared to unity 

but positive, we can write 31-8 -“Qag where 

cosmic ray pressure which i s  estimated to be about 3 x 10 

-10 -3 
4 

i s  the mean 

43 2 
dynes/cm , 



0 

& 

Even for the un 
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Inserting these numbers we see that (47) becomes 

the same as the 

L 

ikely case where the number of  thermal protons per unit volume is  

neutral hydrogen number density ( 

5 -5 < 6.10 years for o( 2 2.5 x 10 . 

-3 1 atom cm ) we see that 

U 

In this case we find the associated frequency, f b *b) 
and wavelength are given by 

and 

e 

respective I y. 

The phase velocity of this wave i s  

For the thermal protons the resonant velocity i s  

and is  given 

10 -1  
which, in  the present circumstances i s  about 4.10 cm. sec. . This velocity, which > 
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i s  greater than the velocity o f  light in vacuo, i s  in reality so far out on the tail of 

the thermal distribution that the thermal particles'resonance behavior can be 

neglected. Thus we are justified, a posteriori, in treating the thermal gas as completely 

cold. 

- 

In order that the results have some meaning we must satisfy the 

inequalities (48). These can be written 

It i s  clear that we can satisfy (53) for reasonable values of 

W o I d i n g  times which are short compared to the mean cosmic ray lifetime in the 

galactic disc since 

N and s t i l l  obtain 

5 r d  < 6.10 years only demands that 
cy 

6. Conclusion 

We have shown that, for reasonable values of the relevant parameters, 

the anisotropic cosmic ray gas is  unstable to the right handed circularly polarized 

wave with an e-folding time very much less than the mean cosmic ray lifetime in 

the galactic disc. This result i s  valid provided 
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(55) 

This condition can easily be met for the cosmic ray gas with present day parameters. 

We conclude that this mechanism i s  an extremely powerful one for 

reducing parallel anisotropy to less than the 1% level in a time short compared to 

the mean cosmic my lifetime. 

This work was supported by the National Aeronautics and Space Administration 

under Grant NASA NsG-96-60. 
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